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ABSTRACT   

A highly scalable and reconfigurable optical convolution paradigm based on wavelength routing is proposed, which 
leverages the unique sliding property of an arrayed waveguide grating router (AWGR) to execute the sliding window 
operation of convolution in the wavelength-space domains. By directly loading two input vectors onto two modulator 
arrays, the convolution result is instantaneously generated at a photodetector array at the speed of light propagation. This 
enables the entire convolution computation to be executed within one clock cycle, eliminating the necessity for 
preprocessing or decomposition into elementary MAC operations. The proposed optical convolution unit (OCU) has 
striking advantages of high scalability, high speed, and processing simplicity compared to those based on optical matrix-
vector multipliers (MVM). A proof-of-concept experiment employing standalone optical components is devised to validate 
optical convolution computing principles with one-bit accuracy. The classification of ten handwritten digit classes sourced 
from the MNIST database is experimentally demonstrated, achieving a precision of 4-bit. New algorithms for data splitting 
and reorganization were concurrently introduced to facilitate the convolution calculation of two-dimensional image data. 
Notably, through Field-Programmable Gate Array (FPGA) across varying data transmission speeds of 1 MHz, 5 MHz, and 
10 MHz, inference accuracy rates of 97.32%, 96.25%, and 94.50% were respectively achieved, demonstrating the 
robustness and versatility of the proposed paradigm. 
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1. INTRODUCTION  

With artificial intelligence (AI) technologies based deep learning1 advance rapidly, the use of deep neural networks is 
expanding across numerous fields. However, this growth escalates swiftly the computational demand for training deep 
neural networks. As traditional electronic computing encounters limitations due to Moore’s Law, the search for computing 
architectures that are faster and more energy-efficient, tailored for deep neural networks, becomes increasingly paramount. 
Optical methods show great potential for the next wave of neural network accelerators due to their advantages of ultra-
wide bandwidth, low power consumption, and inherent parallelism, making them compelling candidates for accelerating 
deep learning hardware. Conventional experimental configurations for handling input dimensions of N require N2 optical 
elements, including Mach-Zehnder interferometers (MZI)2 or micro-ring resonators (MRR)3, to execute multiply-
accumulate (MAC) operations. These methodologies struggle to achieve both high efficiency and scalability to support 
large networks sizes4. 

To address the above issues, we propose a highly scalable and reconfigurable optical convolution paradigm based on 
wavelength routing,  leveraging the unique sliding property of an arrayed waveguide grating router (AWGR)5 to execute 
the sliding window operation of convolution in the wavelength-space domains. The AWGR is a N×N device that can be 
used for wavelength-routing and distributed optical switching in wavelength division multiplexing (WDM) systems6, 7. By 
directly loading two input vectors onto two modulator arrays, the convolution result is instantaneously generated at the 
output photodetector array at the speed of light propagation . This enables the entire convolution computation to be 
executed within one clock cycle, eliminating the necessity for preprocessing or decomposition into elementary MAC 
operations. The proposed optical convolution unit (OCU)8 has striking advantages of high scalability, high speed, and 
processing simplicity compared to those based on optical matrix-vector multipliers (MVM)2, 3. A proof-of-concept 
experiment employing standalone optical components was devised to validate the principles of optical convolution 



 

 

 
 

 

 

computing based AWGR with one-bit accuracy. The classification of ten handwritten digit classes sourced from the 
MNIST database9 is experimentally demonstrated, achieving a precision of 4-bit. New algorithms for data splitting and 
reorganization were concurrently introduced to facilitate the convolution calculation of two-dimensional image data. 
Notably, through Field-Programmable Gate Array (FPGA) across varying data transmission speeds of 1 MHz, 5 MHz, and 
10 MHz, inference accuracy rates of 97.32%, 96.25%, and 94.50% were respectively achieved, demonstrating the 
robustness and versatility of the proposed paradigm. 

2. PRINCIPLE 

Figure 1 illustrates the basic structure of the N×K AWGR , which includes N input waveguides, an input star coupler (the 
first free propagation region, FPR1), a grating composed of an array of waveguides with equal length differences, an output 
star coupler (FPR2), and K output waveguides. When an optical signal is transmitted from an input waveguide to the input 
FPR1, the light diverges due to diffraction and is then coupled to the arrayed waveguides. After propagating though the 
arrayed waveguide grating, the light from each arrayed waveguide is diffracted in the output FPR2 and then focused onto 
a specific position on the imaging surface according to its wavelength, due to the interference effect. Consequently, the 
light of different wavelengths is coupled into different output waveguides. As depicted in Figure 1, M represents the 
number of wavelength, N represents the number of inputs ports of the AWGR  and K is number of the output ports of the 
output ports of the AWGR. For executing full convolution computation, these numbers satisfy the relationship K = M + N 
– 1. A distinctive feature of the AWGR is its “slide property”, wherein the transition of the multi-wavelength input signals 
from one input port to an adjacent input port results in an equivalent shift in the corresponding output ports by the same 
number of channels. This property closely mirrors the concept of sliding window operation in vector-vector convolution 
computations. 

Building upon this pivotal sliding property of the AWGR for wavelength routing, we propose a novel Optical 
Convolution Unit (OCU) for efficiently executing the convolution computing in the optical domain. As shown in Figure 
2, within the OCU framework, vector A is encoded into intensity signals of different wavelengths via a directly modulated 
or externally modulated light source array denoted as A. Simultaneously, vector B is loaded onto another modulator array 
denoted as B. All the signals of different wavelengths of vector A are combined via a multiplexer and then sent to each 
modulator (designated as Bj) of the modulator array B through a power splitter. Each modulator multiplies the vector 
element Bj to its input signals of different wavelengths carrying vector A, and then send them to the corresponding input 
port of the AWGR. As illustrated by the dashed frames in Figure 1, the AWGR demultiplexes the signals of different 
wavelengths from an input port to different output ports with the above-mentioned space invariant sliding property. 

 

Figure 1. Schematic diagram of a N×K AWGR wavelength router. 



 

 

 
 

 

 

 

Figure 2. Optical Convolution Unit (OCU) 

 

Figure 3. (a) OCU experimental setup. (b) Microscopic image of the fabricated (b) Microscopic image of the fabricated 32×32 
AWGR with a footprint of 25×10 mm². (c) Measured transmission spectra from one input port to 32 output ports. 

3. EXPERIMENT RESULT 

3.1 Experimental setup 

Figure 3(a) provides a detailed experimental demo setup of the proposed OCU paradigm, which comprises a laser array, 
EOM (Electro-Optic Modulator) array A, MUX (Wavelength-Division Multiplexer), splitter, EOM array B, AWGR, a 
photodetector (PD) array integrated with a transimpedance amplifier (TIA) circuit, and an FPGA driver board equipped 
with digital-to-analog converter (DAC) and analog-to-digital converter (ADC). The AWGR used in the experiment is 
fabricated on the silica-on-silicon platform. It features a configuration with 32 input and 32 output ports, enabling it to 
perform vector convolution calculations with a maximum length of 16 for both vectors. Operating at a central wavelength 
of 1550 nm, the 32×32 AWGR characterizes a channel spacing of 100 GHz (0.8 nm). The AWGR module used in the 



 

 

 
 

 

 

current experiment includes a built-in heater to ensure the wavelength stability of its channels, which can potentially be 
eliminated by using an athermal design to reduce the power consumption. A photograph of the AWGR chip is shown in 
Figure 3(b). It has a footprint of 25×10 mm2 with curved profile. Figure 3(c) shows the measured transmission spectra of 
the AWGR for input port #17. The 32×32 AWGR is designed with cyclic characteristics, with a free spectral range (FSR) 
equal to 3200 GHz (25.6 nm). The insertion loss for the central channel is about 3.5 dB, with a channel non-uniformity of 
2.5 dB. Notably, the observed crosstalk is below -31 dB.  

 

Figure 4. AWGR C1 to C6 output channel one-bit optical convolution results 

3.2 One-bit optical convolution 

Initially, a 4×4 vector-vector optical convolution computing with one-bit accuracy was conducted, which necessitated 8 
modulators and thus 256 modulation states in the system. However, due to a defect in one modulator, the actual setup 
resulted in a 4×3 convolution instead. Consequently, the AWGR was configured with 6 output channels (C1 to C6). 
Channels C3 and C4, which overlapped with 3 wavelength signals, exhibited higher noise levels, as depicted in Figure 4 
(The red line indicates the ideal results, whereas the blue line depicts the experimental results). Nonetheless, 3 distinct 



 

 

 
 

 

 

signal levels were still identifiable, indicating that the ADC has a high tolerance for quantization noise in one-bit operations. 
This confirms the feasibility of our proposed AWGR wavelength routing optical convolution scheme. 

3.3 MNIST dataset recognition 

As a proof-of-concept demonstration for the OCU proposed in this work, we constructed a 4×4 convolution operator based 
on the wavelength routing to implement an optical-electronic hybrid convolutional neural network (CNN) for MNIST 
dataset recognition. Figure 5 illustrates the architecture of the neutral network, comprising two convolutional layers and 
three fully connected layers. The input image size for the first layer is 28×28. This layer is performed by the AWGR-OCU 
in the optical domain, featuring 6 convolution kernels with a size of 2×2. The resulting output tensor size is 6×27×27. The 
detailed network structure is provided in Table 1. 

 

Figure 5. Framework of the optical-electronic hybrid convolutional neural network for MNIST dataset in accordance with 
LeNet-5. 

 

Table 1.  Neural network structure 

Layer Type Kernel size Stride No. of filters 

Conv 1 Conv2d 2×2 1 6 

Pool 1 Maxpool2d 2×2 2  

Conv 2 Conv2d 5×5 1 16 

Pool 2 Maxpool2d 2×2 2  

FC1 FC/Linear   120 

FC2 FC/Linear   84 

FC3 FC/Linear   10 

 

Given that the MNIST dataset comprises images with a size of 28×28 pixels, while the preliminary Optical 
Convolutional Unit (OCU) system operates at a scale of 4×4, it becomes necessary to partition the data to address this 
difference in dimensions. New algorithms for data splitting and reorganization were concurrently introduced to facilitate 
the convolution calculation of two-dimensional image data, as shown in Figure 6. For simplicity, the convolution kernel 
size is set to 2×2, and the image data is 4×2. For two-dimensional data, the convolution kernel and image data are first 
split by rows to obtain one-dimensional vector data. The OCU then performs convolution on these vectors. The results of 
these convolutions are directly added together to yield the final convolution result for the two-dimensional data. This 
splitting method avoids wasting computing resources and requires the minimal number of calculations. For vector lengths 
greater than 4, column splitting can also be performed similarly. Additionally, scaling up the OCU can accommodate 
convolution calculations for larger vector lengths. In practical experiments, the first layer of the convolution kernel data is 
6×2×2, and the image size is 28×28. Using this splitting method, a total of 392 calculations are required. 



 

 

 
 

 

 

 

Figure 6. Two-dimension data splitting and reorganization algorithm for 4×4 AWGR-OCU. 

The MNIST dataset is split into the training (60,000 images) and testing sets (10,000 images). Our model is trained 
on the entire training set. To maintain compatibility with the 4-bit precision of the system, the input images utilized during 
network training undergo quantization to match the same precision. When the FPGA sends data at a speed of 1MHz, a 
subset of 512 images from the original MNIST test dataset is selected, and the handwritten digit recognition experiments 
are conducted following the aforementioned procedure. Subsequent to obtaining the computational results from the optical 
domain convolution layer, the ensuing image processing is conducted directly in the electrical domain, maintaining the 
parameters of the remaining network layers unaltered. A recognition accuracy of 92.77% is achieved on this randomly 
selected set of 512 images. The confusion matrix is depicted in Figure 7(a), where out of a total of 512 images, 475 were 
precisely inferred and correctly identified.  

To enhance the performance of the neural network, a fine-tuning is performed in the training process. The feature 
map of the 512 images is divided into re-training and testing dataset in a ratio of 400:112. Of these, 400 images are 
designated for re-training within the electrical domain, emphasizing the adjustment of parameters in the remaining network 
layers to mitigate the influence of noise on convolution calculation accuracy. During the fine-tuning process, the 
parameters of the Conv 1 layer were kept unchanged, allowing only the parameters of the subsequent layers to undergo 
fine-tuning retraining. After this fine-tuning process, the network achieved a recognition accuracy of 97.32% on the testing 
dataset (112 images). The final confusion matrix is presented in Figure 7(b). This level of performance is very close to 
the inference performance achieved on electronic computers, indicating that the proposed optical convolution paradigm 
possesses computational capabilities that are on par with those of electronic computers (99.0%). 

The entire 4×4 OCU system operates on a clock frequency of 100 MHz. To achieve noise suppression, we initially 
represent one single user data point with a sequence spanning 100 system clock cycles (equivalent to 1 MHz data 
transferring speed), and average the 100 cycles at the ADC output. This meticulous approach has allowed us to achieve a 
network inference accuracy of 97.32% on the MNIST dataset. To study the impact of noises under different data 
transferring rates, we use a representation scheme equivalent to 5 MHz (where 20 clock cycles represent one data point) 
and 10 MHz (where 10 clock cycles represent one data point) for transmitting data. As shown in Figure 8(a), increasing 
the data transmission speed to 5 MHz results in a slight decrease in accuracy, achieving a still commendable 96.25% after 
fine-tuning. At 10 MHz, a more significant decline in accuracy to 94.50% is observed, as depicted in Figure 8(b). 



 

 

 
 

 

 

 

Figure 7. (a) Confusion matrix corresponding to 92.77% classification inference accuracy at a data transfer speed of 1 MHz. 
(b) Improved confusion matrix with additional fine-tuning, indicating a 97.32% inference accuracy on the MNIST dataset. 

 

 

Figure 8. (a) Confusion matrix corresponding to  96.25%  inference accuracy after fine-tuning under 5 MHz. (b) Confusion 
matrix indicating a  94.50% inference accuracy on the MNIST dataset  with fine-tuning at a data transfer speed of 1 MHz. 

The accuracy deviations across different data transferring rates highlight the limited bit precision due to system noises, 
which are caused by numerous factors, including the electrical and optical disturbances, and instability of some optical 
devices such as the temperature drift and mechanical disturbances, and polarization sensitivity of the EOMs. These noises 
can be mitigated through high-degree photonic integration10,11 and enhanced drive circuit, which aligns with the objective 
of our on-going effort. Additionally, advanced photonic-electronic co-packaging technologies12 can also reduce high-
frequency parasitic crosstalk noises and minimize signal losses at elevated frequencies. These enhancements are crucial 
for improving the calculation accuracy of AWGR-OCU. 



 

 

 
 

 

 

4. CONCLUSION 

In this study, we have proposed a direct optical convolution computing architecture based on wavelength routing, which 
bring forth a range of significant advantages including high scalability, high speed, processing simplicity, minimized 
device counts, and high efficiency. A proof-of-concept experiment employing standalone optical components is devised 
to validate optical convolution computing principles with one-bit accuracy. The classification of ten handwritten digit 
classes sourced from the MNIST database is experimentally demonstrated, achieving a precision of 4-bit. New algorithms 
for data splitting and reorganization were concurrently introduced to facilitate the convolution calculation of two-
dimensional image data. Notably, through Field-Programmable Gate Array (FPGA) across varying data transmission 
speeds of 1 MHz, 5 MHz, and 10 MHz, inference accuracy rates of 97.32%, 96.25%, and 94.50% are respectively achieved, 
demonstrating the robustness and versatility of the proposed paradigm. This is the first demonstration of the Waveguide 
AWGR for direct optical convolution computing, showing potentially superior characteristics compared to other optical 
computing systems reported in the literature. Our proposed optical convolution computing paradigm shows promising 
potential for large-scale photonic integration, laying the foundation for the next generation of ultra-high-speed artificial 
intelligence platforms. 
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