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Direct Optical Convolution Computing Based on Arrayed
Waveguide Grating Router

Jialin Cheng, Chong Li, Jun Dai, Yayan Chu, Xinxiang Niu, Xiaowen Dong,*
and Jian-Jun He*

Optical convolution computing is gaining traction owing to its inherent
parallelism, multi-dimensional processing, and energy efficiency. To handle
input dimensions of N, conventional implementations necessitate N2 optical
elements, such as Mach–Zehnder interferometers or micro-ring resonators, to
process multiply-accumulate (MAC) operations, limiting scalability and
resulting in elevated power consumption. Here, a direct convolution
computing method based on wavelength routing, utilizing the unique sliding
property of an arrayed waveguide grating router (AWGR) to perform the
sliding window operation of the convolution in the wavelength–space
domains is proposed. With two input vectors directly loaded onto two
modulator arrays, the convolution result is instantaneously produced at a
photodetector array. The entire convolution computation is executed within a
single clock cycle without the need for preprocessing or decomposition into
elementary MAC operations. The number of active elements is minimal, only
needed for input/output. The proposed optical convolution unit has striking
advantages of high scalability, high speed, and processing simplicity
compared to those based on optical matrix-vector multipliers. In the first
experimental demonstration, a remarkable classification accuracy of up to
98.2% in handwritten digit recognition tasks using a LeNet-5 neural network
is achieved.

1. Introduction

With the rapid development of artificial intelligence (AI) technol-
ogy based on deep learning, deep neural networks have played
an increasingly important role in many fields and applications.[1]

Deep convolutional neural networks (CNNs), due to their incor-
poration of spatial invariance through convolutional operations
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and parameter sharing,[2] have demonst-
rated significantly superior performance
in certain tasks compared to conven-
tional fully connected networks.[3,4] This
superiority is particularly pronounced
in tasks related to vision, such as image
recognition,[5–8] object detection,[9–12]

semantic segmentation,[13–16] and im-
age generation.[17–19] However, with
the rapid increase in the depth and
breadth of neural networks, the com-
putational demands for training deep
neural networks have escalated swiftly.
As Moore’s Law wanes, traditional elec-
tronic architectures become increasingly
constrained.[20,21] Consequently, the
quest for computing architectures that
are faster and more energy-efficient, tai-
lored for deep neural networks, becomes
increasingly paramount. Optical meth-
ods show great potential for the next wave
of neural network accelerators due to
their advantages of ultra-wide bandwidth,
low power consumption, and inherent
parallelism, making them compelling
candidates for accelerating deep learning
hardware.[21,22] The previously proposed

optical neural networks primarily involve matrix-vector multi-
pliers (MVM),[23–26] leveraging light diffraction,[21,22,27–32] light
interference,[33–36] light scattering,[37] and wavelength division
multiplexing (WDM).[38–44] In these prior exploratory efforts,
most of the work has predominantly focused on constructing
fully connected neural networks through optical means. Existing
optical convolutional neural networks predominantly follow two
technological approaches. The first approach involves decompos-
ing the overall convolution operation into numerous multiply-
accumulate (MAC) operations within local kernel windows,[45–47]

similar to Graphics Processing Units (GPUs). The photonic
convolution is implemented as matrix-vector multiplication
through preprocessing or decomposition into elementary MAC
operations, using optical elements such as Mach–Zehnder inter-
ferometer (MZI),[21,23–25] micro-ring resonators (MRR),[22,42,43,48]

time–wavelength interleaving,[41] frequency convolution,[49]

phase-change materials,[38] and acousto-optical modulators
array.[50] The number of optical elements increases quadrati-
cally as the dimensions of the input vectors increase (O(N2)).
In addition, phase controls are required between the optical
elements, further increasing the number of active controls and
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Figure 1. Schematic diagram of a N × K AWGR wavelength router. A distinctive feature of the AWGR is its “slide property,” wherein the transition of an
optical signal to an adjacent input port corresponds to an equivalent shift in the corresponding output port by the same number of channels.

the complexity of the computing algorithm. This increases the
system complexity, power consumption, as well as the chip size.
Multiwavelength comb sources in combination with WDM
demultiplexers have been used to increase the processing par-
allelism in the MVM-based optical convolution methods.[38–40]

The second approach converts the convolution operation into a
multiply operation in the Fourier domain using the convolution
theorem, with two Fourier transform processes.[30,51–53] It can re-
duce the required number of modulators to a linear relationship
(O(N)) with the dimension of the input vector, as opposed to a
quadratic relationship.[20,22] However, one of the input vectors
cannot be directly loaded. Instead, its Fourier transform needs
to be precalculated in the electrical domain and loaded on to the
modulator array in the Fourier plane. The two on-chip Fourier
transform components with the required coherent phase control
complicates the calibration process and limits the scalability of
the chip.[30] Therefore, most of current efforts face challenges
in achieving both high efficiency and high scalability to support
large network sizes.[54]

To address the above issues, we propose a direct optical
convolution unit (OCU) based on arrayed waveguide grating
router (AWGR).[55] The common arrayed waveguide grating
(AWG) is a 1 × N device, and is widely used in telecom systems
for multiplexing N wavelength signals from N transmitters into
a single output fiber, or for demultiplexing N wavelength signals
from an input fiber to N receivers. The AWGR is a N × N device
that can be used for wavelength-routing and distributed optical
switching in WDM systems.[56–60] Leveraging the unique sliding
property in the wavelength–port relationship of the AWGR,
which matches perfectly the sliding window operation of the
convolution computations, our proposed OCU performs the
convolution computation directly in a single step, without the
need for decomposition into elementary MAC operations as in
conventional MVM-based methods. It has striking advantages
including high scalability, high speed and processing simplicity.
The convolution is performed in the wavelength–space domain
so that the entire convolution computing is executed in a single
clock cycle. As soon as the two input vectors are loaded onto
two modulator arrays, the convolution result is produced at the
output photodetector array instantaneously at the speed of light
propagation. The OCU maintains a linear relationship between

the number of modulators and the dimension of the input
vectors, thus exhibiting high scalability. Besides, the completely
passive AWGR in combination with a minimal number of
active elements required only for input/output make the system
highly energy efficient. No selective summation operation is
needed in the electronic or optical domain. The computational
efficiency and scalability are thus much higher than those of
optical matrix-vector multipliers based on cascaded MZI or
MRR. In the proof-of-concept experiment, utilizing the proposed
optical convolution unit we constructed a LeNet-5[3] network to
perform the standard handwritten digit classification task.[61]

With an output precision of four-bit, we achieved a recognition
accuracy of 98.2%, which is comparable to electronic computers.
This result demonstrates the superiority of our proposed OCU
paradigm and its potential to address the current efficiency and
scalability issues for achieving large-scale neural networks.

2. Principle

The basic structure of the N × N AWGR is shown in Figure 1, in-
cluding N input waveguides, an input star coupler (i.e., the first
free propagation region, FPR1), a grating composed of an array
of waveguides with equal length differences, an output star cou-
pler (FPR2), and N output waveguides. When the optical signal
is transmitted from an input waveguide to the input FPR1, the
light is diverged due to diffraction and then coupled to the ar-
rayed waveguides. After propagating though the arrayed waveg-
uide grating, the light from each arrayed waveguide is diffracted
in the output FPR2, and then focused onto a specific position on
the imaging surface according to the wavelength, due to the in-
terference effect. Consequently, the light of different wavelengths
is coupled into different output waveguides.
The AWGR represents a pivotal device for the efficient routing

of optical signals at varying wavelengths from a solitary input
port to multiple output ports, as depicted in Figure 1, where M
represents the number of wavelengths,N represents the number
of input ports of the AWGR and K is the number of output ports
of the AWGR. For executing full convolution computation, these
numbers satisfy the relationship K = M + N − 1. A distinctive
feature of the AWGR is its “slide property”, wherein the transi-
tion of the multi-wavelength input signals from one input port
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Figure 2. Optical Convolution Unit (OCU). Vector A is encoded into the intensities of optical signals of various wavelengths from Light Source Array A
and vector B is loaded onto modulator array B, placed at the input ports of the AWGR. The optical vector–vector convolution results, denoted as C, are
produced instantaneously across the AWGR output ports and can be converted to digital electrical signal within one clock cycle.

to an adjacent input port results in an equivalent shift in the
corresponding output ports by the same number of channels.
This property closely mirrors the concept of sliding window
operation in vector–vector convolution computations. Building
upon this pivotal sliding property of the AWGR for wavelength
routing, we propose a novel OCU for efficiently executing the
convolution computing in the optical domain. As shown in
Figure 2, within the OCU framework, vector A is encoded into
intensity signals of different wavelengths through a directly mod-
ulated or externally modulated light source array denoted as A.
Simultaneously, vector B is loaded onto another modulator array
denoted as B. All the signals of different wavelengths of vector
A are combined and then sent to each modulator (designated
as Bj) of the modulator array B through a power splitter. Each
modulator multiplies the vector element Bj to its input signals
of different wavelengths carrying vector A, and then send them
to the corresponding input port of the AWGR. As shown by the
dashed frames in Figure 1, the AWGR demultiplexes the signals
of different wavelengths from an input port to different output
ports with the above-mentioned space invariant sliding property.
Simultaneously, as illustrated by the color-coded product terms

at the right-hand side of Figure 2, it alsomultiplexes signals of dif-
ferent wavelengths from different input ports to each output port
according to its wavelength routing property, to be detected by a
photodetector, which performs the summation operation when
converting the optical signals to an electrical signal. The results of
the entire vector–vector convolution, labeled as vector C, are thus
obtained at the output of the photodetector array. In the context of
full convolution between two vectors with N elements, the output
vector C attains a length of 2N − 1. It is noteworthy that the op-
tical power detected at each output port of the wavelength router
is directly proportional to the convolution of vectors A and B

Ck = A⊗ B =
∑

i+j=k−1
AiBj, i = 1, 2,… ,M, j = 1, 2,… , N (1)

which represents the sum of the dot product between two input
vectors with different displacements corresponding to different
sliding positions. The distinctive routing property of the AWGR

enables the implementation of a sliding window operation for
convolution. This inherent characteristic establishes a linear cor-
relation between the number of modulators and the dimension
of the computation vector, as opposed to a quadratic relationship
(N2), thus rendering our OCU remarkably scalable.
Figure 3a provides a detailed experimental demo setup of the

proposed OCU paradigm, which comprises a laser array, electro–
opticmodulator (EOM) array A,MUX (Wavelength-DivisionMul-
tiplexer), splitter, EOM array B, AWGR, a photodetector (PD) ar-
ray integrated with a transimpedance amplifier (TIA) circuit, and
a field-programmable gate array (FPGA) driver board equipped
with digital-to-analog converter (DAC) and analog-to-digital con-
verter (ADC). The AWGR used in the experiment is fabricated on
silica-on-silicon platform. It features a configuration with 32 in-
put and 32 output ports, enabling it to execute vector convolution
calculations with a maximum length of 16 for both vectors. Op-
erating at a central wavelength of 1550 nm, the 32 × 32 AWGR
characterizes a channel spacing of 100 GHz (0.8 nm). The AWGR
module used in the current experiment includes a built-in heater
to ensure the wavelength stability of its channels, which can po-
tentially be eliminated by using an athermal design to reduce the
power consumption. A photograph of the AWGR chip is shown
in Figure 3b. It has a footprint of 25 × 10 mm2 with curved pro-
file. Figure 3c shows the measured transmission spectra of the
AWGR for input port #17. The 32 × 32 AWGR is designed with
cyclic characteristics, with a free spectral range (FSR) equal to
3200 GHz (25.6 nm). The insertion loss for the central channel
is about 3.5 dB, with a channel non-uniformity of 2.5 dB. Notably,
the observed crosstalk is below −31 dB.
The laser array employed in experiment produces four dis-

tinct wavelength sat 1548.52, 1547.72, 1546.92, and 1546.12 nm,
aligned with four consecutive wavelength channels of the 32 ×
32 AWGR. The lasers are coupled to lithium niobate (LiNbO3)
EOM array A through polarizationmaintaining fibers, then com-
bined by an AWG multiplexer (MUX). The aggregated multi-
wavelength signals are then sent to each of the second EOM ar-
ray B coupled to the input ports of the AWGR. The LiNbO3 in-
tensity modulators used in both EOM arrays are iXblue MX-LN-
20, characterized by a specified maximum modulation speed of
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Figure 3. a) OCU experimental setup composed of a laser array, electro–opticmodulator (EOM) array A,MUX (wavelength-divisionmultiplexer), Splitter,
EOM array B, 32 × 32 AWGR, PD (photodiode) and transimpedance amplifier (TIA) array, digital-to-analog converter (DAC), analog-to-digital converter
(ADC), field programmable gate array (FPGA), PC. b) Microscopic image of the fabricated 32 × 32 AWGR with a footprint of 25 × 10 mm2. c) Measured
transmission spectra from one input port to 32 output ports.

20 GHz, a half-wave voltage of 7 V, and an insert loss of 4 dB.
At the output of the AWGR, optical power-to-voltage conversion
is executed using photodetectors (PDs) equipped with integrated
TIA circuits—specifically, KY-PRM-500M-I-FC, featuring a tran-
simpedance gain of 5000 mV μW−1 and a 3-dB bandwidth of
500 MHz. The input vector data and the convolution kernels are
loaded onto the modulators though the DAC under FPGA con-
trol. Based on the AWGR property described above, once the data
vectors are loaded onto the two modulator arrays, the vector–
vector convolution result is obtained at once at the PD array and
is convert to digital electrical signal within one system clock cy-
cle by an ADC, without the need for preprocessing or decom-
position into elementary MAC operations. It is worth mention-
ing that all the optical devices can be potentially integrated on a
chip, similar to wavelength transmitter–router developed for op-
tical switching.[60] Additionally, the input vector dimensions can
be easily scaled to 32 with a 32 × 64 AWGR.
For high-speed data input/output, instead of using expensive

instruments such as arbitrary waveform generator and oscil-
loscope with very limited channel counts,[33] we designed and
fabricated a more practical FPGA-controlled drive circuit to ef-
ficiently execute vector data input/output, accommodating se-
quences with amaximum length of 32. This drive circuit incorpo-
rates a 64-channel DAC, enabling push–pull drive for MZI mod-
ulators, resulting in a high dynamic extinction ratio. The drive
circuit also provides differential output voltages spanning from
0.3 to 2.1 V, maintaining an output voltage accuracy of up to 16
bits. A 64-channel ADC is integrated into the drive circuit, offer-

ing a precision of 10 bits with the capacity to sample voltages up
to 1 V. Operating at a clock speed of 100MHz, the entire drive cir-
cuit empowers the system with a peak computational capacity of
up to 32× 32× 2× 100M= 0.2 TMACs (teramultiply-accumulate
operations). By employing the state-of-the-art DAC/ADC at clock
rates in the order of 10 GHz, a computing capacity beyond 20
TMACs can be accommodated.
As a proof-of-concept demonstration for the OCU proposed

in this work, we constructed a 4 × 4 convolution operator based
on the wavelength routing to implement an optical–electronic
hybrid CNN for Modified National Institute of Standards and
Technology (MNIST) dataset recognition.[61] The CNN usually
consist of convolutional layers (which perform the convolutional
operations), pooling layers (which reduce the size of the con-
voluted matrices, that is, the feature maps), nonlinear layers
(which provide nonlinear activations such as rectified linear unit,
or ReLU for short), and fully connected layers (which performs
the task of classification based on the features extracted through
the previous layers). The convolutional layers enable CNNs to
possess translation-invariant characteristics so that they can
identify and extract patterns and features from data irrespective
of variations in position, orientation, or scale, which is crucial
for object recognition. The convolutions are computationally
demanding so an optical accelerator is highly desirable. The
CNN employed in the OCU experiment has been implemented
in accordance with the architectural framework of LeNet-5,[3]

a very efficient CNN for handwritten character recognition.
Figure 4 illustrates the architecture of the neutral network,
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Figure 4. Framework of the optical–electronic hybrid convolutional neural network for MNIST dataset in accordance with LeNet-5.

Table 1. Neural network structure.

Layer Type Kernel size Stride No. of filters

Conv 1 Conv2d 2 × 2 1 6

Pool 1 Maxpool2d 2 × 2 2

Conv 2 Conv2d 5 × 5 1 16

Pool 2 Maxpool2d 2 × 2 2

FC1 FC/Linear 120

FC2 FC/Linear 84

FC3 FC/Linear 10

Note that the optical functionality is currently limited to only the first CONV layer,
while the subsequent computations are executed in the electrical domain. In the
future, it is possible to execute multiple layers of convolutions in the optical do-
main by looping back the data after pooling and nonlinear activation of each layer
in the electrical domain to the input of the OCU or by cascading multiple OCU units
with nonlinear optical elements for executing nonlinear activations such as ReLU
operations.[26,62]

comprising two convolutional layers and three fully connected
layers. The input image size for the first layer is 28 × 28. The first
layer is performed by the AWGR OCU in the optical domain,
featuring six convolution kernels with a size of 2 × 2. The
resulting output tensor size is 6 × 27 × 27. The precise network
structure is detailed in Table 1.

3. Results

3.1. MNIST Dataset Recognition

TheMNIST dataset are split into the training (60 000 images) and
testing sets (10 000 images). Our model is trained on the entire
training set. Tomaintain compatibility with the four-bit precision
of the system, the input images utilized during network training
undergo quantization to match the same precision. As depicted
in Figure 5a, after 15 training iterations, the inference accuracy
stabilizes at ≈99.0%, closely approximating the theoretical accu-
racy limit of the neural network.
The six convolution kernels of the Conv 1 layer in the trained

neural network are displayed in Figure 5b (top), along with the
mathematical convolution result (middle) and the experimental
optical convolution result (bottom) for an example handwriting
image. Notably, the optical domain convolution results exhibit

slight deviations from themathematical outcomes. And the com-
putation accuracy can be calculated by the deviations of the exper-
imental optical convolution results from the mathematical con-
volution results. It is important to note that due to limitations in
the signal-to-noise ratio of the system, the experimental convo-
lution result achieves a four-bit accuracy. Nevertheless, the over-
all accuracy of the vector–vector convolution calculation reaches
an impressive 96.3%. It is noteworthy that the discrepancies be-
tween themathematical and experimental results predominantly
fall within ±1, as elucidated in Figure 5c.
Subsequently, the optical convolution result is fed into the pos-

terior network for further processing, ultimately yielding recog-
nition results at the output layer. A subset of 512 images from
the original MNIST test dataset is selected and the handwrit-
ten digit recognition experiments are conducted following the
aforementioned procedure. Subsequent to obtaining the compu-
tational results from the optical domain convolution layer, the
ensuing image processing is conducted directly in the electrical
domain, maintaining the parameters of the remaining network
layers unaltered. A recognition accuracy of 92.8% is achieved on
this randomly selected set of 512 images. The confusion ma-
trix is depicted in Figure 5d, where out of a total of 512 images,
475 were precisely inferred and correctly identified. Note that
this performance falls slightly short compared to an electroni-
cally trained LeNet-5 network (99.0%). The observed reduction in
accuracy during network inference is primarily attributed to the
noise within the preliminary demo system and the constrained
precision four-bit of convolution calculations within optical
domain.

3.2. Fine-Tuning Training

To enhance the performance of the neural network, a fine-tuning
is performed in the training process. The feature map of the 512
images is divided into re-training and testing dataset in a ratio of
400:112. Out of these, 400 images are designated for re-training
within the electrical domain, emphasizing the adjustment of
parameters in the remaining network layers to mitigate the
influence of noise on convolution calculation accuracy. During
the fine-tuning process, the parameters of the Conv 1 layer were
kept unchanged, allowing only the parameters of the subsequent
layers to undergo fine-tuning retraining. After this fine-tuning
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Figure 5. a) The simulation accuracy of test dataset and network inference loss during 100 epochs of training. b) Six convolution kernels (top), math
results (middle), and experimental results (bottom). c) Error density chart showing the vector–vector convolution calculation accuracy of the 4 × 4 OCU
based on AWGR is 96.3%. d) Confusion matrix corresponding to 92.8% classification inference accuracy for a directly trained network. e) Improved
confusion matrix with additional fine-tuning in the training process, showing 98.2% inference accuracy for the MNIST dataset.
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Figure 6. a) Measured accuracy of convolution calculations, and recognition accuracies for trainings with and without fine-tuning, under different data
transferring speed. b) Comparison of mathematical image of convolution results under 1, 5, and 10 MHz.

process, the network achieved a recognition accuracy of 98.2%
on the testing dataset (112 images). The final confusion matrix
is presented in Figure 5e. This level of performance is very close
to the inference performance achieved on electronic computers,
indicating that the proposed optical convolution paradigm pos-
sesses computational capabilities that are on par with those of
electronic computers (99.0%).
Due to the constraint of available lasers and modulators, we

used 2 × 2 kernel size in our first experimental demonstration of
a 4 × 4 OCU based on discrete components. The 2 × 2 convolu-
tion kernel size suffices to implement relatively simple Lenet-5
neural network, to showcase the feasibility of our proposed OCU
based on AWGR wavelength routing. We are currently working
on an integrated Photonic Integrated Circuit (PIC) version of the
OCU with much larger vector dimensions so that larger kernel
sizes can be implemented. This will allow more complex net-
work architectures such as ResNet to be demonstrated with larger
datasets such as Fashion MNIST.

3.3. Accuracy versus System Noise under Varying Data Speed

The entire 4 × 4 OCU system operates on a clock frequency of
100 MHz. To achieve noise suppression, we initially represent
one single user data point with a sequence spanning 100 system
clock cycles (equivalent to 1 MHz data transferring speed), and
average the 100 cycles at the ADC output. This meticulous ap-
proach has allowed us to achieve a network inference accuracy
of 98.2% on the MNIST dataset. To study the impact of noises
under different data transferring rates, we use a representation
scheme equivalent to 5 MHz (where 20 clock cycles represent
one data point) and 10 MHz (where ten clock cycles represent
one data point) for transmitting user data. In our comprehensive
evaluation, we compared the accuracy of the vector–vector con-
volution calculations, and the recognition accuracies with and
without fine-tuning in the training process under varying data
transmission rates.
As illustrated in Figure 6a, the network inference accura-

cies without the fine-tuning training are 92.7% (1 MHz), 95.9%

(5 MHz), and 91.7% (10 MHz), respectively. At a frequency of
1 MHz, the recognition accuracy stood at 98.2% after fine-tuning
training. As the data transmission speed is increased to 5 MHz,
we observe a marginal decrease in accuracy, resulting in a still
commendable 96.8%. When operating at 10 MHz, there is a no-
table decline in accuracy to 95.0%. This observed trend aligns
with our anticipated outcome, as heightened system noise levels
invariably lead to diminished accuracy, as shown in Figure 6b. It
is important to note that the corresponding vector–vector convo-
lution calculation accuracy exhibited a similar diminishing trend,
from 96.3% (1 MHz) to 92.4% (5 MHz) and 90.2% (10 MHz).
The accuracy deviations between different data transferring

rates reflect the limited bit precision due to system noises,
which are caused by numerous factors, including the electri-
cal and optical noises, and instability of some optical devices
such as the temperature drift and mechanical disturbances,
and polarization sensitivity of the EOMs. By averaging multi-
ple samples with increased ADC sampling frequency, the ac-
curacy of the convolution calculation can be significantly im-
proved. The noises can also be mitigated with high-degree pho-
tonic integration[63–65] and improved drive circuit, which aligns
with the objective of our on-going effort. Advanced photonic–
electronic co-packaging technologies[66] can also reduce high-
frequency parasitic crosstalk noises and minimize signal losses
at elevated frequencies. We believe that it is possible to improve
the current four-bit accuracy to eight-bit, thereby meeting the de-
mand of a more extensive array of AI applications.

3.4. Prospect of Photonic Integration

It is worth noting that while the current experimental system
is based on an AWGR chip with many standalone components,
all the optical components have the potential to be integrated
onto a single silicon photonic chip with hybrid integrated light
sources. Apart from light sources, diverse optical devices in-
cluding multiplexers, power splitters, modulators, AWGR, and
germanium (Ge) photodetectors can be integrated on silicon-
on-insulator (SOI) platform. The integration of lasers on-chip
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can be achieved through heterogeneous integration,[63] hybrid
integration solutions,[64] or flip-chip bonding.[65] Such pho-
tonic integration with advanced optical–electronic co-packaging
technologies offers significant advantages in terms of reduc-
tions in both chip size and power consumption, in addition to
much increased system scalability and stability. For example,
a SOI-based 32 × 32 AWGR from ref. [67] has a footprint of
only about 1.1 mm × 2.35 mm. Furthermore, the AWGR can be
replaced by a more compact echelle diffraction grating router,
and an intra-cavity Etched Diffraction Grating (EDG) can be
used to make a self-aligned multi-wavelength laser instead of the
combination of the laser array of different wavelengths and the
wavelength multiplexer,[68] to further reduce the chip size and
device count. A cascaded MZI structure with the same number
of input/output ports requires 1984 MZI’s and has a chip size of
24mm× 18mm for achieving 32 × 32 optical switch.[69] The chip
size for constructing a 32 × 32 matrix-vector multiplier would be
even much bigger considering the phase shifters needed at each
MZI input/output port.[21] Similarly, for convolution calculation
based on MRR, it is observed that a total of 1024 rings are nec-
essary to construct a 32 × 32 matrix-vector multiplier.[48] Such
a large number of devices would consume a significant amount
of power since each of them needs to be thermally tuned. Take
the more efficient MRR approach as an example. The tuning
efficiency of a typical SOI-based MRR is 27.53 mW/FSR.[70] Con-
sidering the average tuning of half FSR, the power consumption
for thermal tuning of a single MRR amounts to 13.77 mW. For
a 32 × 32 MVM, the total power consumption for the thermal
tuning is assessed at 14.1 W. In comparison, the tuning effi-
ciency of a SOI-based AWGR is typically measured at 7.5 nm
W−1.[71] The required maximum power consumption is 0.43 W
for tuning a channel. It is evident that the thermal tuning power
consumption of the AWGR is substantially lower than that of the
MRR array. Furthermore, upon integrating a laser array on-chip,
a more efficient strategy is to thermally tune the wavelengths
of the lasers to align with the AWGR channels, resulting in a
substantial reduction in the total power consumption. We are
currently implementing a 32 × 64 AWGR based OCU on the SOI
platform. The total chip size is only 3.6 mm × 2.8 mm, including
a 32 × 64 AWGR, a 1 × 32 splitter, 32 MZIs and 64 PDs/grating
couplers for data input/output, etc. More detailed comparisons
of the size, power consumption and other metrics will be
highlighted in the subsequent work with experimental results.
In the wavelength routing based OCU proposed in this arti-

cle, the speed of convolution computing is primarily constrained
by the clock frequencies of the DAC and ADC circuits. Elevat-
ing the clock frequency through the entire driver system would
yield an exceptionally high computing power. By employing a 128
× 128 OCU with 10 GHz DAC/ADC, for example, a computing
power of 327.68 TMACs can be attained. This computing capac-
ity surpasses Nvidia GPU A100, but only requires a 130 nm sil-
icon photonic fab instead of 7 nm Integrated Circuit (IC) tech-
nology. To sum up, our proposed optical convolution computing
paradigm offers several key advantages compared to previously
reported schemes based on matrix-vector multipliers:

(a) Processing simplicity: Two input vectors are directly loaded
onto two modulator arrays, one for application data and
the other for kernel or weight matrix, no pre-processing is

needed at the input side, either electronically or optically. At
the output side, each vector element of the convolution re-
sult is obtained directly at the photodetector array, without
the need for regrouping or selective summation operation
in the electronic or optical domain.

(b) High speed: The vector–vector convolution computation is
executed within a single clock cycle without the need for pre-
processing or decomposition into elementary MAC opera-
tions as in conventional MVM-based methods. The sliding
operation is performed in the wavelength–space domains in-
stead of the time-space domains. The multiply and accumu-
late operations corresponding to different sliding window
positions are executed simultaneously at different modula-
tors and photodetectors at the input and output ports of the
AWGR, respectively. This high degree of parallelism signifi-
cantly boosts the operational speed of the system, making it
suitable for real-time applications.

(c) High scalability: The AWGR executes the convolution opera-
tion in both space and wavelength domains. The number of
elements in the two input vectors is mapped to the number
of input wavelengths and the number of input ports on the
AWGR, respectively. This 2D parallel processing feature re-
sults in 2N as opposed to N2 scalability. Both the number of
AWGR ports and the number of modulators/detectors scale
linearly with the vector dimension N.

(d) Low device count: For 32 × 32 vector convolution, for exam-
ple, only a single AWGR is required, as opposed to thousands
of MZIs or MRRs with even more control electrodes in the
case of vector-matrix multipliers. This reduction in device
count can lead to more compact chip size and high comput-
ing power density.

(e) Low power consumption: The AWGR is completely passive,
while the number of active elements such as MZIs and PDs
is minimal, which are only needed for data input/output.
The energy efficiency is thus much higher than those of op-
tical matrix-vector multipliers based on cascaded MZIs or
MRRs. Although an integrated heater is usually required for
the AWGR to ensure wavelength stability, in the case of in-
tegrated OCU chip, only a single temperature controller is
needed for the entire chip. This is in contrast to MZI/MRR
based optical convolution architectures, where each of the
numerous MZI/MRR devices requires a heater for fine tun-
ing and stabilization, in additional to a common tempera-
ture controller to stabilize the system including other com-
ponents such as lasers and grating couplers.

(f) High reconfigurability: Since the kernel or weight matrix is
loaded onto a high-speed modulator array, the system allows
for reconfigurability at high speed as needed.

(g) High accuracy: Computational efficiency of the OCU and the
algorithm allowed us to achieve a high inference accuracy of
98.2%, even with an ADC output accuracy of four-bit con-
strained by system noises. Reducing the system noises can
further improve the accuracy of the convolution operation
and enhance the data throughput.

(h) Low requirements on fabrication technology: A silicon pho-
tonic OCU accelerator based on the wavelength routing can
potentially reach similar computing capacity and computing
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power density to state-of-the-art GPUs, but only needs
130 nm processing node, as opposed to 7 nm or below.

4. Conclusion

In this work, we have proposed a direct optical convolution
computing architecture based on wavelength routing, which
bring forth a range of significant advantages including high
scalability, high speed, processing simplicity, minimized device
counts, and high efficiency. Building upon this novel architec-
ture, image recognition based on a 4 × 4 optical convolution
unit has been demonstrated, for the first time, with a DAC/ADC
based high speed electronic driver developed in-house. Owing to
multi-dimensional parallelism, the convolution operation can be
obtained within one single system clock cycle, without decom-
position into numerous MAC operations and execution in time
sequence. The convolution results have been directly subjected to
inference on MNIST dataset by a trained neural network imple-
mented in accordance with the framework of Lenet-5, achieving
an accuracy rate of 92.8%. Through meticulous fine-tuning
training, it has been shown that the inference accuracy can be
further elevated to an exceptional 98.2%. It is the first time that
the AWGR is demonstrated for direct optical convolution com-
puting with potentially much superior characteristics compared
to other optical computing systems reported in the literature.
Our proposed optical convolution computing paradigm exhibits
promising potential for large-scale photonic integration. These
developments will lay the foundation for the next generation
ultra-high–speed artificial intelligence platforms.
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