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An optical—electronic hybrid convolutional neural network (CNN) system is proposed and investigated for its
parallel processing capability and system design robustness. It is regarded as a practical way to implement real-time
optical computing. In this paper, we propose a complex-valued modulation method based on an amplitude-only
liquid-crystal-on-silicon spatial light modulator and a fixed four-level diffractive optical element. A comparison
of computational results of convolutions between different modulation methods in the Fourier plane shows the
feasibility of the proposed complex-valued modulation method. A hybrid CNN model with one convolutional layer
of multiple channels is proposed and trained electrically for different classification tasks. Our simulation results
show that this model has a classification accuracy of 97.55% for MNIST, 88.81% for Fashion MNIST, and 56.16%
for Cifar10, which outperforms models using only amplitude or phase modulation and is comparable to the ideal
complex-valued modulation method.  © 2023 Optica Publishing Group
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1. INTRODUCTION

The convolutional neural network (CNN) has been widely
used in computer vision since AlexNet was demonstrated in
2012 [1,2]. As a type of deep neural network (DNN), CNN
consists of feature-extracting convolutional (CONV) layers,
feature-merging pooling layers, and fully connected (FC) layers.
The convolution is typically conducted using a traditional
sliding window spatially moving a kernel matrix across the target
matrix. Among all these layers, CONV layers consume the most
computing power, especially when it comes to the classification
of high-dimensional datasets since they often require a great
number of CONV layers to construct a DNN model. Take
the example of ResNet, which is now a mainstream scheme in
computer vision; its 152-layer prototype has 150 CONV layers
taking up most of its total computing power in its inference
stage [3]. Despite widespread applications of graphic processing
units (GPUs), even more significant computation resources
are required for the convolutions of larger images. It remains
a significant challenge to reduce the power consumption and
latency of DNN models.

A substantial amount of computing power is required in
the CONV phase of CNN. Generally, a spatial convolution
between an input image of M x M and a kernel of N x N
requires computation resources proportional to (M x M x
N x N). Further, larger images take exponentially longer
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operation time than smaller ones in both training and inference
stages. Consequently, spatial CNN is not viable for large image
classification tasks. The Fourier convolutional neural network
(FCNN) takes element-wise multiplication in the Fourier
domain instead of spatial convolution to accelerate operation
speed and maintain excellent performance [4], especially in
tasks such as large image classifications.

Owing to the inherent computing parallelism, large band-
width, and low power consumption of optical and photonic
systems, optical computing systems or hardware accelerators
have become an area of great interest in recent years [5,0]. There
are mainly two categories of optical computing paradigms:
all-optical diffraction DNNs (D2NN) and hybrid optical-
electronic neural network systems [7,8]. Compared with
D2NNs, hybrid systems have reconfigurability and are easier
to implement experimentally because of the electronic adaptiv-
ity. Using Fourier transformations performed optically by 4 f°
systems [9,10], hybrid optical—electronic CNN systems have
lower latency, larger bandwidth, and incredible performances.
However, most previous hybrid CNN systems implemented
convolutions with fixed kernels imposed by a diffractive optical
element (DOE) [11,12] or kernels with amplitude-only (AO)
Fourier plane modulation [13,14] since commercial spatial
light modulators (SLMs) can modulate only either amplitude
information (AO) or phase information [phase-only (PO)]
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[15]. Complex-valued modulation, which is essential in imple-
menting Fourier convolutions (as shown in Section 2), cannot
be performed directly using these SLMs.

There have been many proposed methods to realize complex-
valued modulation for computer-generated holography
(CGH). The double phase method [16] and phase—amplitude
projection method [17] generally employ two SLMs to conduct
complex-valued modulation. The digital micromirror device
(DMD)-based super-pixel method [18-20] needs an extra
spatial low pass filter to compensate for errors brought by its
enlarged quantification pitch. Although good performance
has been achieved in CGH, these complex-valued modula-
tion methods all add to the system’s complexity and cannot be
directly applied in Fourier convolutions.

In this paper, we propose a reconfigurable optical—electronic
hybrid FCNN model, which involves an AO SLM and a passive
four-level DOE to perform super-pixel-based complex-valued
modulation in the Fourier plane of the 4 f system. Multi-
channel Fourier convolution is enabled to accelerate CNN’s
inference phase. Simulation and test results of CNN based on
different Fourier-plane modulation methods are presented
to demonstrate the advantages of our proposed complex-
modulation method. The test accuracy of the FCNN model
reaches 97.95%, 88.87%, and 56.16% for MNIST, Fashion
MNIST, and Cifar10, respectively, which are all comparable to
the ideal complex-valued modulation in the one-layer FCNN
model. Theoretical errors caused by the imperfect physical
structure of liquid-crystal-on-silicon (LCOS)-based SLMs are

also analyzed.

2. HYBRID FCNN ARCHITECTURE

We propose a hybrid optical—electronic FCNN in this section.
The architecture of our model is shown in Fig. 1. Fourier con-
volutions are conducted in optical domain with an optical 4 f°
system and a four-level DOE. The derived feature maps are then
sent to the computer to complete the classification.

A. Optical System and Modulation Method
1. Optical 4 f System

In our FCNN architecture, a coherent optical 4 f* system is
implemented to operate the Fourier transformation. The optical
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4 f system is a telescope system in which the distance between
the image plane and object plane is 4 £, consisting of two convex
lenses of the same focal length. The optical field distribution in
the back focal plane (Fourier plane) of the first Fourier lens is
the Fourier transform of the optical field in the front focal plane
(the input SLM) within the Fresnel approximation. Since the
spatial-domain convolution is the inverse Fourier transform of
the Fourier-domain Hadamard pointwise product, once the
input image is loaded onto the object plane while the Fourier
transform of the pretrained kernel is loaded onto the Fourier
plane, the optically convolved feature map is obtained in the
image plane and read out by a CMOS camera, by which instant
Fourier convolution is obtained without energy consumption.
Reflective nematic-twisted SLMs are employed in our setup;
therefore, a polarization beam splitter (PBS) is used with each
SLM to realize amplitude modulation. The focal lengths of
the lenses in this 4 /" system are both set to 150 mm, and the
apertures of these two Fourier lenses are both 12.7 mm to satisfy
paraxial Fresnel approximation while maintaining sufficient
spatial bandwidth. The spatial bandwidth productis (D*/A £)?
[21]. For our 4 f system, the working wavelength is 0.633 pm,
so the calculated spatial bandwidth product is approximately
1700 x 1700, which is adequate for most commercial SLMs.

2. Super-Pixel Complex-Valued Modulation Method

Here we propose a super-pixel scheme for realizing complex-
valued modulation using a nematic-twisted-LCOS-based AO
SLM with a four-level DOE phase plate attached to its surface.
All 2 x 2 neighboring pixels on the SLM are grouped as one
super-pixel to realize complex-valued modulation. Similar
super-pixel methods have been proposed in [22,23] using
off-axis optical setups. In our scheme, a four-level DOE phase
plate is used to induce phase changes in adjacent pixels instead
of implementing an off-axis optical setup. The phase plate is
implemented on asilica substrate by etching twice in orthogonal
directions with depths of A/4(n — 1) and A/8(n — 1), using
the same photomask with a periodic grating pattern [24]. Here
n is the refractive index of silica. The physical structure of one
super-pixel of this DOE is shown in Fig. 2(a). Each element of
the transparent DOE has the same size as the SLM pixel. The
2 x 2 pixels within a single super-pixel are etched with different
etching depths [0, A/8(n — 1), A/4(n—1), 31/8(n —1)]

after two etchings, which would, respectively, lead to various
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Fig.1. Optical—electronic hybrid CNN system architecture. The input image is optically convolved. The after-pooling feature maps are element-
wise multiplied by a binary positional filter in which the transmission coefficient is unity in areas corresponding to the output feature maps in the out-
put plane and is zero in the padding areas. The filtered data are pooled again and sent into a fully connected layer to get classification results. 7, number
of convolutional kernels (or output channels); 72, original size of the input image.
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Fig. 2.  Illustrations of the proposed super-pixel complex-valued
modulation method. (a) Four-level phase modulation of a single super-
pixel of the DOE. Four adjacent pixels in the SLM make a super pixel.
The DOE has the same pixel size as the SLM; four phase differences of
one single super-pixel are induced with four different etching depths in
the DOE. #, refractive index of the DOE. Blue pixels: amplitude-only
modulation by SLM as the input; red pixels: independent modula-
tion of the real part and imaginary part of a super-pixel after passing
twice through the phase plate. (b) 25 x 25 Fourier-plane complex
modulation. Phase distribution of the four-level DOE, modulated
amplitude distribution provided by SLM, and the equivalent phase
and amplitude distributions are shown.

phase differences (0, 7/2, 7, 37/2) since they are passed twice
with the reflective SLMs employed. These four phase differences
can be regarded as the basic vectors of four directions in the
complex plane. By programming the grayscale value of the SLM
based on these vectors, any complex-valued vector can be rep-
resented. Nematic-twisted LCOS SLM is chosen here to realize
8-bit amplitude modulation. Mathematically, any value in the
2D complex plane can be expressed by the linear combination
of two non-collinear basic vectors. For example, the complex
value —1/3+7 can be modulated with value +1 loaded onto
the down-left pixel, while value 1/3 is loaded onto the up-right
pixel within one super-pixel, as shown in Fig. 2(a). An example
of 25 x 25 complex-valued modulation is shown in Fig. 2(b).
We will validate the reliability of performing complex Fourier
convolutions with this method in the following sections.

B. Electrical Framework

The electrical backend of the FCNN system is depicted on the
right-hand side of Fig. 1. During the inference stage, the resized
images are embedded into 600 x 600 pixel padding images.
The trained kernels are tiled onto one 600 x 600 padding
image, and the Fourier transform of the whole image is loaded
onto the modulation SLM with super-pixel complex-valued
modulation. The optically convolved feature maps are detected
by a CMOS array and activated by its inherent saturation
function. We simulate this process by implementing tanh as
the nonlinear activation function. The convolved results are
pooled using max-pooling and extracted by the spatial binary
filter, which has unity transmission at the pixels corresponding
to the expected positions of the output feature maps and zero
transmission at all other pixels. The split results are max-pooled
again, and flattened to 1D vectors, and then sent into a FC layer,
where it is converted into logit vectors and used to complete the
classification tasks.

The training of the hybrid FCNN model includes two elec-
trical training phases. During the pre-training phase, a modified
LeNet model containing # CONV kernels is pre-trained to
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Table 1. Parameters of the Pretrained and FCNN
Models®
Pretrained Model Hybrid FCNN Model
Optical Fourier conv:
frontend size = 600 x 600
(element wise)
Activation function:
tanh
Electrical Conv: Maxpoolingl:
backend size=1xnXxhxw size=2x 2
stride=1 stride=2
Activation function: Positional filter:
ReLU size = 300 x 300
Maxpooling: Maxpooling 2:
size=2 X2 size=2 X2
stride=2 stride=2
FCl:n x m x m/4,1280 FC:n x m x m, 10
FC2:1280,10

“n, number of convolutional kernels; # x w, dimension of each kernel. For
FC layers, left-hand-side number is the input dimension, and right-hand-side
number is the output dimension.

obtain kernels for extracting spatial-invariant features. Since the
optical Fourier convolution is a spatially continuous compu-
tation, the “stride” of the CONV layer is set to one to simulate
this physical process. After that, during the post-training phase,
the images of the original dataset are all resized to four times
their original size in each dimension and padded to 600 x 600.
The pre-trained kernels are tiled onto a 150 x 150 padding
image and also resized in accordance with the input image to
be Fourier-transformed altogether. More details of this pre-
processing procedure are discussed in Section 3. With this
Fourier-domain pattern loaded into the Fourier plane in dif-
ferent ways (amplitude and phase, AO, PO, and super-pixel
methods), the parameters in the FC layers are updated with the
stochastic gradient descent (SGD) algorithm, and different
optical—electronic FCNN models are trained.

Structures of these two networks are shown in Table 1. In
the pre-training phase, the dimension of each 2D CONV
kernel is # x w. The number of kernels is 7 (7 equals eight in
our architecture). The activation function is rectified linear
unit (ReLU). Specifically, for models processing MNIST and
Fashion MNIST, / = w =5; for models processing Cifarl0,
h=w=29.m X m is the original size of the input image (for
example, m = 32 for Cifar10).

For the layout of the trained kernels on the 150 x 150
padding image, horizontal and vertical intervals between each
kernel center are both 1.5 times the original input image size
(e.g., 48 pixels for Cifar10) to avoid overlapping in the output
plane. The transmission windows in corresponding positional
filter sizes two times the input size in each dimension are spaced
with an interval equal to three times the input size (e.g., window
size equals 64 X 64, and interval equals 96 pixels for Cifar10),
since the whole image is 300 x 300.

3. RESULTS AND DISSCUSSION
A. Fourier Convolution Tests

In Fourier convolution, the kernels are all Fourier-transformed
into Fourier domain. We can derive the equivalent spatial
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CONYV kernel [or point spread function (PSF)] according to
the modulation methods used in the Fourier plane. We substi-
tute the classic convolutions with Fourier convolutions in our
FCNN to make use of the 4 f" system to perform 2D Fourier
transform and convolution. To validate the feasibilicy and
benchmark the performance of our super-pixel complex-valued
modulation method, we compare the single-channel and multi-
channel FCNN results of different Fourier-domain-modulation
methods in the following sections.

1. Single-Channel Fourier Convolution

In the simulated 4 f system, a random image of the MNIST
dataset is loaded onto the input plane, as shown in Fig. 3(a),
while full light field complex amplitude distribution, AO distri-
bution, PO distribution, and super-pixel-based complex-valued
distribution of the Fourier transform of a single CONV kernel
are loaded onto the Fourier plane, as shown in Fig. 3(b). It is
referred to as single-channel convolution since there is only one
output image in the output plane. Note that the pixel size of each
input image here is enlarged four times from 6.3 x 6.3 um?
to 25.6 x 25.6 um? to eliminate second-order diffraction
while keeping the Fourier spectrum within the modulation area.
Feature maps at the output image plane can be derived, as shown
in Fig. 3(c), after the convolution is processed at the Fourier
plane using different modulation methods. By the naked eye,
it is hard to distinguish the differences among standard con-
volution, complex-field Fourier convolution, and super-pixel
Fourier convolution. AO Fourier convolution also exhibits
little difference with respect to the ideal convolution in this
single-kernel situation. Noticeable blurring occurs only for PO
Fourier convolution.

However, quantitative differences can be computed by the
mean square errors (MSEs) of different methods with respect
to standard spatial convolution. MSE:s of different modulation
methods with respect to standard spatially convolved feature
maps [shown in Fig. 3(c)] are shown in Table 2. Average MSEs

@ Input Fourier transform

OFT .

(b) Complex field Amplitude-only Phase- only Super pixel
Standard Conv

(©)
Feature map

Fig. 3. Results of one-channel Fourier convolution tests with the
convolutional kernel’s Fourier transform modulated using different
methods, including full complex field modulation, amplitude-only
modulation, phase-only modulation, and the proposed super-
pixel complex-valued modulation. (a) Input image and its Fourier
transform. Random samples of MNIST are used as input images.
(b) Fourier-plane modulations of a convolutional kernel using dif-
ferent methods. (c) Convolved feature maps of standard spatial
convolution and different Fourier-plane modulation methods.
Input size: 28 x 28, pixel size: 25.6 X 25.6 pm?*; Fourier-plane size:
600 x 600, pixel size: 6.3 x 6.3 um?; feature map size: 28 x 28, pixel
size: 25.6 x 25.6 pm?.
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Table 2. MSEs of Single-Channel Convolutional
Feature Maps with Different Modulation Methods
Modulation Method Mean Square Error (MSE)
Full-complex-field (ideal) 1.54 x 10~°
Amplitude-only 6.30 x 1073
Phase-only 1.64 x 1072
Super-pixel 9.82 x 107

are derived by averaging the MSEs of 100 random MNIST
images. For one-channel convolutions, the loss of either ampli-
tude information or phase information causes a large decrease
in convolution accuracy. This is especially evident in the PO
method, where the absence of amplitude modulation in the
Fourier plane results in weaker spatial filtering capabilities and a
larger MSE. On the other hand, the MSE of the proposed super-
pixel method is similar to that of the ideal full-complex-field
modulation, indicating a minimal loss in accuracy.

2. Multi-Channel Fourier Convolution

It is known that higher classification accuracy and robustness
can be attained with multiple convolution kernels, which can
be loaded sequentially in time. However, in the time-sequential
modulation scheme, the repeatedly electronically driven updat-
ing of the weighted Fourier-transformed kernel is unavoidable,
which leads to longer processing times and more power con-
sumption. For small-sized input images and kernels, more than
one CONV kernel can be tiled onto one kernel image, and
multi-channels of convolved output images can be obtained
simultaneously without cross talk. This is referred to as multi-
channel convolution. In this method, we can transform the
traditional time-sequential multi-kernel convolution into
spatial multi-channel convolution by implementing complex-
valued modulation in the Fourier plane, making full use of the
parallelism of the free-space optical system and speeding up the
CONYV procedure by reducing the sequential steps. The same
benefits of comparable classification accuracy and robustness
can be achieved while taking much less time than the sequential
multi-kernel method.

Assume the CONV kernel W(x, y) is composed of an array
of multiple CONV kernels. It can be expressed as

m n

Wi(x, y) =Z

Wi(x, y) %8(x —iAx, y —kAy), (1)

where W, ; is the weighted kernel in column 7, raw 4; x, y are
the spatial coordinates of the input plane; *denotes convolu-
tion; Ax, Ay are the spatial shifts of each kernel. The Fourier
transform F(f;, f,) of W (x, y) canbewrittenas

F(fur F)=2_ Fislfur f5)

i=1 k=1

x exp[—2m j(i fiAx + kf,A9)],  (2)

where f, f, are the coordinates of the Fourier plane; F; 4 is the
Fourier transform of W; ;. Generally, F( f;, f,) in Eq. (2) isa
complex-valued function, meaning that an ideal convolution
can be achieved only through complex-valued modulation in
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Fig. 4. Results of multi-channel Fourier convolution tests with
different Fourier-plane modulation methods. (a) Input image
and its Fourier transform. Input images are random samples of
MNIST embedded into 600 x 600 paddings. (b) Fourier trans-
forms of the convolutional kernels modulated in different methods.
Example kernels here are classic Sobel operators detecting edges of
different directions. They are tiled on one single image and Fourier-
transformed. Specific Fourier-plane modulation method is noted on
each modulation plane. (c) Convolved feature maps of standard spatial
convolution and Fourier convolutions with different Fourier-plane
modulation methods. The sizes of the input image, its Fourier trans-
form at the Fourier plane, and the feature map are all 600 x 600, with
a pixel size of 6.3 x 6.3 pm?.

Super pixel

Feature map

the Fourier plane. However, commercial SLMs can perform PO
or AO modulation, which are both insufficient for ideal convo-
lution. The proposed super-pixel method provides a solution to
this problem.

To be compatible with the angular spectrum (AS) method
used in simulations of multi-channel convolutions, the input
images should be pre-processed. The number of pixels of the
input image is increased to 112 x 112, while the pixel size
is kept at 6.3 x 6.3 um?. Through these modifications, the
physical size of the input image remains the same as in the case of
single-channel convolution (pixel number: 28 x 28, pixel size:
25.6 x 25.6 um?). Then the area of the input image is enlarged
to 600 x 600 pixels with zeros padded in the empty surround-
ing area as shown in Fig. 4(a) to guarantee multi-channel output
and ensure the adequate accuracy of the AS method [25].

To obtain the Fourier transform of the multi-kernel plane,
multiple different CONV kernels are tiled onto a single plane
and undergo the same preprocessing as the input images,
including resizing and padding. The spacing between each
kernel should be at least larger than the size of input image to
prevent overlapping of different channels on the output plane.
Afterwards, the Fourier transform of the entire image is calcu-
lated using diffraction-based Fourier transformation. Different
Fourier-plane modulation methods are used to conduct muldi-
channel convolutions as shown in Fig. 4(b). The results are
illustrated in Figs. 4(b) and 4(c).

From Fig. 4(b), it can be observed that the phase distribu-
tion of the Fourier transform of a multi-kernel plane is much
more sophisticated than that of the single kernel in Fig. 3(b).
Consequently, the loss of phase information will have a more
severe impact on the convolution results. From Fig. 4(c), feature
maps of the AO multi-channel Fourier convolution overlap
at the center of the output plane, rendering it unsuitable for
multi-kernel convolution. For PO modulation, errors are intro-
duced in every output channel, causing the feature maps to
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Table 3. MSEs of Multi-Channel Convolutional
Feature Maps with Different Modulation Methods
Modulation Method Mean Square Error (MSE)
Full-complex-field (ideal) 1.18 x 107>
Amplitude-only Not applicable
Phase-only 1.60 x 1072
Super-pixel 2.53 x 1074

be blurred. The MSEs of the multi-channel Fourier convolu-
tion with different modulation methods are shown in Table 3.
From the derived feature maps and MSEs, the accuracy of PO
modulation is similar to the case of single-channel convolution.
Despite sacrificing half of the Fourier-plane resolution, the
super-pixel method remains the most effective way to approxi-
mate full-complex-field modulation for use in multi-kernel
convolution.

The above multi-channel convolution results can be under-
stood from the analysis of Fourier-transform equations. In
Eq. (2), Fi+(fx, fy) is the Fourier transform of the field distri-
bution function of a kernel in the spatial domain, which can be
approximated as the Fourier transform of a delta function under
the approximation that the kernel is small enough compared
with the whole padding plane. In this case, F; x(fs, f;) is a
constant corresponding to the amplitude of the kernel W; ; with
no phase information. The phase information is all provided
by the exponential factor related to the position of the kernel.
Under these approximations, we can derive the distorted convo-
lution kernel (or PSF) in the output image plane as follows if the
amplitude/phase information is removed in its Fourier plane:

m n

MY Wiilx, ) #8(x, ), 3)

i=1 k=1

out a0 (X _)’

N

M§

Woue-po(x, ) & S(x —iAx,y —kAy). (4)

i=1 k=1

Here W, .26 1s the inverse Fourier transform of F with AO
information, and Wyepo is the inverse Fourier transform of
F with PO information. As shown in Eq. (3), for AO Fourier
convolution, the CONV kernel tends to overlap at the center of
the image plane, resulting in cross talk between output channels.
Therefore, it is not suitable for multi-kernel convolutions. For
PO Fourier convolution, although positional information is
preserved, the weight information of different kernels is lost
as illustrated in Eq. (4). As a result, the filtering effect is weak-
ened, similar to the case of one-channel Fourier convolution
in Section 3.A.1. Thus, the complex-valued modulation is
even more important for multi-channel Fourier convolutions.
Although the intensity of the feature map obtained by the super-
pixel method is weaker (amplified by a factor of two for clearer
illustration), the image quality is close to that obtained by using
the ideal complex-valued modulation.

B. Multi-Channel FCNN Tests

Three classical datasets [MNIST, Fashion MNIST, and
grayscale-CIFAR10, shown in Figs. 5(a)-5(c), respectively]
are used to train and test our hybrid model. There are 50,000
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Fig.5. Convergence plots of different models used for classification

of MNIST, Fashion MNIST, and Cifar10, and the upside labels are
representations of different datasets. The percentage in each inset
denotes the peak accuracy of each model. (a) Convergence plots of
eight-channel CNN, benchmarked with MNIST. (b) Convergence
plots of eight-channel CNN, benchmarked with Fashion MNIST.
(c) Convergence plots of eight-channel CNN, benchmarked with
grayscale-Cifar10. (d) Convergence plots of four-channel CNN,
benchmarked with grayscale-Cifar10.

training images and 10,000 testing images in each dataset.
Before training, all images are preprocessed with the same pro-
cedure depicted in Section 3.A.2. In the training phase, training
images are sent into the model and forward-propagated, and
the derived logits vector of each image is compared with its label
to calculate the loss function. SGD is applied to update the
weights in the FC layer. In the testing phase, testing images are
sent into the trained model and forward-propagated only to get
logit vectors and compared with the labels to decide whether
the predictions are correct. The test accuracy is worked out
with the accurate predictions divided by the total amount of
the testing images in one epoch. As shown in Fig. 5 and Table 4,
while dealing with simple datasets such as MNIST, different
modulation methods reach similar accuracy, because they do
not need sophisticated feature extractions. For a slightly more
complex dataset like Fashion MNIST, as shown in Fig. 5(b), the
super-pixel method shows slightly better performance over the
other two methods, as the accuracy of the super-pixel method
can reach 88.8%. A more challenging dataset Cifarl0 test
further shows the advantages of complex-valued modulation
since the super-pixel method can achieve blind test accuracy of
56.2%, while the AO and PO methods can reach only 50.8%
and 49.7%, respectively. Results of four-channel architecture
and eight-channel architecture are shown in Figs. 5(c) and 5(d),
respectively, to prove that while only one-layer Fourier convolu-
tions are performed, with the increasing number of kernels used,
blind test accuracy improves within limited training epochs
regardless of which modulation method is used.

Though in our architecture that uses the super-pixel in the
Fourier plane, as the pixel size is 2 (in each dimension) larger
than other methods, the corresponding object plane is half the
region of the other methods, and the restricted object plane also
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Table 4. Peak Classification Accuracies of
Eight-Kernel FCNN Model

MNIST Fashion MNIST CIFAR10

Modulation Method (%) (%) (%)
Full-complex-field (ideal) 98.4 90.1 59.6
Amplitude-only 95.3 88.1 50.8
Phase-only 97.2 87.8 49.7
Super-pixel 97.6 88.8 56.2
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Fig.6. (a) Sketch of structure between SLM and DOE considering

the distance between them. (b) Convergence plots of multi-channel
FCNN model with grayscale-Cifar10 of different gap sizes between
the DOE and SLM. (c) Convergence plots of sequential-multi-kernel
FCNN model grayscale-Cifar10 of different gap lengths. (d) Decay of
accuracy with the gap length of two different methods.

restricts the number of CONV kernels loaded onto the same
padding image. This restriction can be mitigated by applying
SLM with higher resolutions.

C. Effect of the Gap between SLM and DOE

Generally, commercial liquid-crystal-based SLMs are packaged
with a protective glass plate with a thickness of about 3 mm. The
physical structure of a common twisted nematic LCOS [26] is
shown in Fig. 6(a). In this scheme, the four-level DOE cannot
be attached to its surface directly due to the gap between the
DOE and the modulation plane, which means the diffraction
between the DOE and the LCOS modulation unit cannot be
ignored.

However, due to the inherent adaptive ability of the FC net-
work, this diffraction effect can be moderated to some degree.
The training plots of hybrid optical—electronic systems with
different gap distances are shown in Figs. 6(b) and 6(c). The for-
mer indicates that the classification accuracy of multi-channel
CNN decreases with an increased gap between the DOE and
LCOS. When the gap is smaller than 4 mm, the fine-tuning
capability of the FC layer will still have a blind test accuracy of
approximately 51% with the multi-channel FCNN model,
maintaining about 88% of its ideal value, as shown in Fig. 6(d).
In this case, the sequential-multi-kernel FCNN model (in
which kernels are loaded sequentially in time) seems to have
better performance. For example, when the gap is as large as
5 mm, the sequential-multi-kernel method still has 57.85%
classification accuracy, which is around 94% of its ideal accuracy
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without the gap, and is about 10% higher than the multi-kernel
method. That is because the tiled multi-kernel results in a larger
size and consequently higher-frequency details in the Fourier
plane, which leads to larger diffraction angles in the gap. For
the sequential-multi-kernel method, there is only one kernel
at a time; thus the corresponding simpler Fourier transform of
the single kernel is not so sensitive to diffraction, as the adjacent
super-pixels express similar values. But for the multi-channel
method, the information loaded onto neighboring pixels is
very different. The enlarged object field of the kernels corre-
sponds to the increased details in the Fourier plane, leading
to increased sensitivity to the variation of the gap between the
DOEand SLM.

4. CONCLUSION

In summary, in this paper, a reconfigurable hybrid optical-
electronic complex-value-modulated Fourier CNN  with
LCOS-based AO SLMs and a four-level DOE is proposed. The
single-channel convolutions and multi-channel convolutions
modulated with different methods are compared. The results
show that the proposed super-pixel method, compared with the
AQO or PO method, is the best optical—electronic way to operate
Fourier convolution, with the smallest MSE with respect to the
standard spatial convolution. Evaluation of the hybrid FCNN
models with different modulation methods is conducted using
the benchmark datasets MNIST, Fashion MNIST, and Cifar10,
in which the model with our proposed super-pixel method
reaches state-of-the-art test accuracy of one-layer CNN models
(97.55%, 88.81%, and 56.16%, respectively), which are all
better than those obtained with AO or PO modulations, and
close to the ideal complex-valued modulation method. The
results suggest that quasi-complex-value modulation in the
Fourier domain at the expense of lower Fourier-domain reso-
lution shows better performance than the AO or PO method,
especially for complex datasets. Furthermore, the added kernels
in our one-layer Fourier convolution model improve the final
blind test accuracy without increasing the processing time.
The effect of the gap between the DOE and SLM has also been
analyzed, which shows that the accuracy decreases with the
increasing gap and increasing size of the tiled kernel. Therefore,
this gap needs to be minimized as much as possible. The pro-
posed hybrid optical—electric CNN computing system achieves
complex-valued modulation in Fourier CNN with a single
SLM, a four-level DOE, and a single optical 4 /" system, while
achieving higher accuracy with better simplicity, experimental
robustness, and adaptivity.
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